Adhesive Characterization in Pre-Stressed Piezoelectric Laminates
نویسندگان
چکیده
Pre-stressed piezoelectric laminates, consisting of one or more metal layers and a piezoelectric material bonded together with an adhesive, have been widely studied over the past few years, both numerically and experimentally. Most of the current research has concentrated on the effect of the metal layers, types and geometry, along with variations in the active layer of the laminate. Historically, the adhesive layer has been neglected as a contributing factor in the overall performance of the final device. This paper attempts to address the effect of the adhesive line thickness and its influence on the performance of pre-stressed piezoelectric laminates under specific boundary conditions. All laminates tested were constructed with the following lay-up: 0.354 mm thick stainless steel, adhesive, 0.381 mm PZT ceramic, adhesive, and a 0.0254 mm aluminum layer. The devices having an adhesive line thickness of 0.169 mm were classified as group A, and group B were the devices with an adhesive line thickness of 0.036 mm. The adhesive line thickness for group A was approximately 21% more than the line thickness of group B. The devices were tested in a simply supported, free-free condition under a series of loads at a constant frequency of 5 Hz over a voltage range from 400 to 800 Volts peak-topeak. Displacement was measured using loads of 25, 50, 75, 100, and 200 grams for each actuator. The data from each group was averaged and compared. The results showed group B generated more displacement at the same "arm weight" applied as compared to group A. However, only three samples for group B were measured since the rest of the samples failed during testing. Failure of the devices of group B may be due to the ultimate stress of the devices and their ability to lift a load under those conditions. The study demonstrated that adhesive layer thickness, along with the manufacturing process, has to be taken into account when developing an application that requires load-bearing capabilities. Even though no direct mechanical property measurements were taken to verify this theory, the results demonstrated that the adhesive does play a critical role in the performance of the device as an actuator and should be factored into both experimental and numerical studies to obtain more accurate predictions of the ultimate behavior of these devices.
منابع مشابه
Reflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space
This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...
متن کاملInteraction of laminate damage and adhesive disbonding in composite scarf joints subjected to combined in-plane loading and impact
Impact tests were carried out on composite laminates and composite scarf repairs, while both were subjected to in-plane loading with tensile pre-strain levels up to 5000 microstrain. The results show that pre-straining of the composite laminates has no noticeable influence on the size of the delamination area for the given impact energy of 8 J, which represents a typical barely-visible impact o...
متن کاملSensor Measurements For Diagnostic Equipment
Piezoelectric sensors are widely used in accelerometers, for detecting failures in structures, and for vibration suppression systems among others. Such sensors can be manufactured in many different sizes, and packages to work in a variety of environments. The main characteristic of the piezoelectric material that allows for this effect is the conversion of mechanical to electrical energy. That ...
متن کاملPre-stressed Curved Actuators: Characterization and Modeling of their Piezoelectric Behavior
Pre-stressed curved actuators consist of a piezoelectric ceramic (lead zirconate titanate or PZT) sandwiched between various substrates and other top layers. The substrates used in this study are stainless steel, and fiberglass. The top layers are made up of aluminum and carbon. Due to their enhanced strain capabilities, these pre-stressed piezoelectric devices are of interest in a variety of a...
متن کاملCoupled Simulation of Circuit and Piezoelectric Laminates
In this paper, an algorithm for the coupled simulation of circuit and piezoelectric laminate devices is presented. A finite element solver for piezoelectric laminates is included in the SPICE framework as a capacitor. The charge of this capacitor is a function of both the terminal voltage and the mechanical strain in the piezoelectric material. The coupled simulator allows simulation of novel m...
متن کامل